Skip to main content

My History Student

This year I have a grand total of 9 summer students in my group: 6 SURF, 1 MURF, 1 pre-grad intern and 1 high school volunteer. All of them are teamed up with a postdoc and/or grad student, and some of them are working together. It's a great arrangement that allows me to have about a dozen little "subprocesses" going at any moment during the summer. We're investigating everything from the instrumental profile of HIRES to the binarity of B-type stars to the characterization of brown dwarfs. Some have even started side projects with one another while observing at Palomar!

One of my students, Lori, is working on a very unique astronomy project. She is a frosh (freshman) working with Jon Swift on a brief history of exoplanetary science, from Aristotle to the NASA Kepler Mission. So far she's doing an amazing job of showing the world that Caltech students are more than just differential equations and surface integrals. You can follow her progress on our group blog. Below, I have reposted her most recent writeup of the life of Bruno, the heretical exoplanetary theorist:


Giordano Bruno: Exoplanetary Martyr

By Lori Dajose

Nicolaus Copernicus’s On the Revolutions of Heavenly Spheres marked the beginning of a major shift in Western thought. Concepts of perfection and heaven at that time were deeply rooted in the religious political structure that prevailed throughout the Middle Ages and were tied to ideas about the ultimate fate and purpose of human life. The existence of planets alone was no threat to the dogma of the Catholic Church; the Greek origin of “planet” translates literally into “wandering star,” and Earth could still be viewed as the heart of the cosmos through a complicated mathematical scheme for the paths of Mercury, Venus, Mars, Jupiter, and Saturn. But as Copernicus knew, to categorize our own home, Earth, as merely another planet was dangerous, and he cleverly dodged a certain fate by waiting for a posthumous publication of his monumental work. This fate was passed on five years after his death in 1543 to a talented Italian born Filippo Bruno. Bruno’s insistence that the Sun was a star just like all the others, and that there existed other worlds and other intelligent life throughout the universe, caused quite the controversy.

As a young priest, Bruno could be considered a kind of wandering star himself. Fleeing Naples in 1576 after learning of an impending indictment for his heretical views, Giordano, as he was then known, traveled about Italy seeking shelter for his beliefs. He continued to expand his education, obtaining a doctorate of theology and teaching philosophy, theology, and the art of memorization at various universities throughout Italy and France. Supported by King Henry III and other powerful French patrons, Bruno gained quite a following, despite his views being condemned by the Vatican. Upon finally returning to Venice, he was arrested and imprisoned for seven years, which finally culminated with his death by way of incineration. It has been said that the belief he clung to most strongly, despite pressure by the Church to renounce his claims and repent, was his view that there were multiple and possibly infinite numbers of worlds.


Bruno lives on as a statue in Rome, at the site of his death.

So why was the Church so against this idea, given their acceptance of the five other known planets? The idea of a planet as a world is something unique among astronomical objects. Galaxies, black holes, stars; these are all things, but none, except planets, are actually places. The word "world" connotes humanness, or the affairs of life, such that the existence of other worlds would imply that we are not alone. Though this may have been heretical in the eyes of the Church, it is the root of a philosophical fascination with planets. Our ability to comprehend other worlds and to have a glimpse at understanding our place within an immense vastness—our cosmic context—invokes inspiration, connectedness and awe. The flip side of this is that our new perspective puts us in no particularly special place and our individual scope is considerably diminished. We are not the center of the universe.
We're not even the center of the solar system! What a blow to the ego of humanity!

We know Bruno was correct in one regard—that there are countless numbers of other planets out in the vastness, circling their respective stars just as we are. But his second principle has not yet been verified: are we the lone settlers of the cosmos? Carl Sagan famously referred to Earth as a "lonely speck," and as such, finding life elsewhere in the universe would be a monumental breakthrough, arguably one of the greatest in human history, wholly redefining our ideas on the meaning of life itself!  This discovery would draw the attention of every soul on this planet skyward, and while looking upwards, each would also be compelled to look inwards at himself. "Life as we know it" is a limiting statement in itself; who knows what foreigners may lie beyond our solar system? We are on the hunt to find planets which are more than just objects; we are searching for those that are homes. Twenty years ago, when the first extrasolar planet was confirmed, the door of discovery was flung open wide. Twenty years ago, Bruno rolled over in his grave—figuratively, as his final state was merely a pile of ashes—and triumphantly proclaimed "I told you so!" Now here lies the search for other worlds, stemming back to the 1500's. It is an ongoing investigation, with a colorful history of progressive, and sometimes absurd ideas, but as we pick up steam into the 21st century we press onward, making compelling discoveries into the nature of planets, and by extension, discoveries about ourselves and our own home.


Comments

Popular posts from this blog

On the Height of J.J. Barea

Dallas Mavericks point guard J.J. Barea standing between two very tall people (from: Picassa user photoasisphoto).

Congrats to the Dallas Mavericks, who beat the Miami Heat tonight in game six to win the NBA championship.

Okay, with that out of the way, just how tall is the busy-footed Maverick point guard J.J. Barea? He's listed as 6-foot on NBA.com, but no one, not even the sports casters, believes that he can possibly be that tall. He looks like a super-fast Hobbit out there. But could that just be relative scaling, with him standing next to a bunch of extremely tall people? People on Yahoo! Answers think so---I know because I've been Google searching "J.J. Barea Height" for the past 15 minutes.

So I decided to find a photo and settle the issue once and for all.

I started by downloading a stock photo of J.J. from NBA.com, which I then loaded into OpenOffice Draw:


I then used the basketball as my metric. Wikipedia states that an NBA basketball is 29.5 inches in circumfe…

Finding Blissful Clarity by Tuning Out

It's been a minute since I've posted here. My last post was back in April, so it has actually been something like 193,000 minutes, but I like how the kids say "it's been a minute," so I'll stick with that.
As I've said before, I use this space to work out the truths in my life. Writing is a valuable way of taking the non-linear jumble of thoughts in my head and linearizing them by putting them down on the page. In short, writing helps me figure things out. However, logical thinking is not the only way of knowing the world. Another way is to recognize, listen to, and trust one's emotions. Yes, emotions are important for figuring things out.
Back in April, when I last posted here, my emotions were largely characterized by fear, sadness, anger, frustration, confusion and despair. I say largely, because this is what I was feeling on large scales; the world outside of my immediate influence. On smaller scales, where my wife, children and friends reside, I…

The Force is strong with this one...

Last night we were reviewing multiplication tables with Owen. The family fired off doublets of numbers and Owen confidently multiplied away. In the middle of the review Owen stopped and said, "I noticed something. 2 times 2 is 4. If you subtract 1 it's 3. That's equal to taking 2 and adding 1, and then taking 2 and subtracting 1, and multiplying. So 1 times 3 is 2 times 2 minus 1."

I have to admit, that I didn't quite get it at first. I asked him to repeat with another number and he did with six: "6 times 6 is 36. 36 minus 1 is 35. That's the same as 6-1 times 6+1, which is 35."

Ummmmm....wait. Huh? Lemme see...oh. OH! WOW! Owen figured out

\begin{equation}
x^2 - 1 = (x - 1) (x +1)
\end{equation}

So $6 \times 8 = 7 \times 7 - 1 = (7-1) (7+1) = 48$. That's actually pretty handy!

You can see it in the image above. Look at the elements perpendicular to the diagonal. There's 48 bracketing 49, 35 bracketing 36, etc... After a bit more thought we…