Skip to main content

Kepler: Back from the Dead

This is a guest post from my graduate student, Andrew Vanderburg. Over the past few months, Andrew has been focusing his attention on data collected by the crippled Kepler Space Telescope.  After being disabled in May of last year by the failure of the second of two reaction wheels used to point itself, Kepler has been given new life thanks to some brilliant work done by Ball Aerospace and the Kepler team. Here's my previous post about the K2 Extended Mission. 

Below, Andrew describes his work, which is documented in a recently accepted paper available here and which has recently been incorporated into the Kepler team's guest observer tools. Also, be sure to check out his website, where you can access corrected K2 data from an engineering test conducted in February on this interface. Who knows, you might even find a transiting planet!

Since its launch in 2009, the Kepler Space Telescope has revolutionized the field of exoplanetary science with the discovery of thousands of planet candidates, many of which are smaller than the Earth. Kepler’s science operations were prematurely halted, however, when the spacecraft was disabled in May of 2013 by the failure of the second of four reaction wheels used to point and stabilize the telescope. Because Kepler’s scientific punch came from its high precision enabled by its fine pointing control, many people assumed that Kepler’s exoplanet discovering days were over. 

Fortunately, the Kepler team and Ball Aerospace thought otherwise. Over the next six months after the failure of Kepler’s second reaction wheel, they devised a way to control Kepler with only two reaction wheels, balancing the spacecraft against the constant stream of photons and particles being ejected from the Sun, and correcting any imbalances with very precise burns of Kepler’s thrusters. Their brilliant work has led to the new (and recently approved) K2 mission, in which Kepler looks in new fields, moving every 75 days to look at a completely new set of stars, to search for new planets.

Graphic from the Kepler/K2 team describing the K2 mission strategy

One of the biggest uncertainties about the K2 mission was: “How well can Kepler measure photometry in this new operating mode?” If Kepler’s worsened ability to point itself degrades the quality of its data, it may be harder for the K2 mission to accomplish its goals of finding exoplanets in new environments and around different types of stars. When the Kepler team released data from a 9 day engineering test of the new operation mode taken in February, we attempted to answer that question. 

After four years of being spoiled by ultra-high-quality photometry from Kepler, our first look at the K2 data came as a bit of a shock. Unlike the pristine Kepler data, K2 data (shown below compared to Kepler in the first plot) had wild jagged features contaminating the light curve, which made it hard to see all but the deepest planet transits. In order to continue searching for small planets in the K2 mission, something would have to be done to improve the quality of the photometry.
Comparison of Kepler (bottom) and K2 (top). Raw K2 data is much noisier than Kepler data.
Fortunately, it turned that there was a way to improve the quality of K2 data. The additional noise in the data was caused by the spacecraft moving back and forth ever so slightly as it rolled due to a slight imbalance between the spacecraft and the Solar wind. Every six hours or so, Kepler’s thrusters fired to bring the telescope back to its original position. We found that even though raw K2 photometry was noisy, it was noisy in a predictable and consistent way, which meant there was a way to improve it. 

We did this by comparing the star’s brightness measured by Kepler at every position during its roll to other measurements taken nearby. When we corrected K2 data using other measurements taken nearby, we found that the quality of data was greatly improved, as we show in the image below. Overall we were able to improve raw K2 data by a factor of 2-5, and got back to within at least factor of 2 of Kepler -- for stars of a particular brightness between 12th and 13th magnitude, K2 performed with 35% of Kepler’s precision. K2 should be able to continue hunting for small exoplanets and doing impactful science even without two of its reaction wheels. 


Correcting the light curve based on the motion of the spacecraft substantially improves K2 data.

We have released our processed K2 data to the community and built a web interface to easily view and explore it. We encourage the community to take a look, explore, and learn the quirks of K2 data before the real science begins with data from the first K2 campaign fields. To learn more about our technique, download our paper describing the technique here.

Comments

Popular posts from this blog

An annual note to all the (NSF) haters

It's that time of year again: students have recently been notified about whether they received the prestigious NSF Graduate Student Research Fellowship. Known in the STEM community as "The NSF," the fellowship provides a student with three years of graduate school tuition and stipend, with the latter typically 5-10% above the standard institutional support for first- and second-year students. It's a sweet deal, and a real accellerant for young students to get their research career humming along smoothly because they don't need to restrict themselves to only advisors who have funding: the students fund themselves!
This is also the time of year that many a white dude executes what I call the "academic soccer flop." It looks kinda like this:


It typically sounds like this: "Congrats! Of course it's easier for you to win the NSF because you're, you know, the right demographic." Or worse: "She only won because she's Hispanic."…

Culture: Made Fresh Daily

There are two inspirations for this essay worth noting. The first is an impromptu talk I gave to the board of trustees at Thatcher School while I was visiting in October as an Anacapa Fellow. Spending time on this remarkable campus interacting with the students, faculty and staff helped solidify my notions about how culture can be intentionally created. The second source is Beam Times and Lifetimes by Sharon Tarweek, an in-depth exploration of the culture of particle physics told by an anthropologist embedded at SLAC for two decades. It's a fascinating look at the strange practices and norms that scientists take for granted.
One of the stories that scientists tell themselves, whether implicitly or explicitly, is that science exists outside of and independent of society. A corollary of this notion is that if a scientific subfield has a culture, e.g. the culture of astronomy vs. the culture of chemistry, that culture is essential rather than constructed. That is to say, scientific c…

The Bright Line is not Monotonic

The anthology of myths commonly known as America rests upon the notion that history is linear. In the past people in this country ignorantly did bad things to other people. But thanks to the passage of time, we can now "let the past to be the past," because today we live in a time when things have gotten much better. Furthermore, any problem that our society faces in the present will inevitably be solved as "the old guard" dies off and a new generation of better people takes their place. 
Of course this story isn't told so simply or explicitly. But the assumption lurks beneath the other stories we, as Americans, tell ourselves and each other. The myth certainly undergirds the notion that racism is a thing of the past, and that today we inhabit a "post-racial" world in which all people, regardless of race have equal access to betterment, dignity and happiness. We are lulled into beliving that at some point in the mid to late 1960's, a wise reveren…